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Global Surface Temperature (CRU)
versus the
CMIP5 (IPCC ARS5) GCMs
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IPCC
SR1.5

Keep the
temperature
below 1.5 °C

Cumulative emissions of CO2 and future non-CO: radiative forcing determine

the probability of limiting warming to 1.5°C

a) Observed global temperature change and modeled
responses to stylized anthropogenic emission and forcing pathways

Global warming relative to 1850-1900 (°C)

2.0

Observed monthly global
mean surface temperature

Estimated anthropogenic
warming to date and
likely range

Likely range of modeled responses to stylized pathways

[ClGlobal COz emissions reach net zero in 2055 while net
non-CO:2 radiative forcing is reduced after 2030 (greyin b, c & d)

[[] Faster COz reductions (blue in b & ¢) result in a higher

probability of limiting warming to 1.5°C

* [[]No reduction of net non-CO2 radiative forcing (purple in d)
results in a lower probability of limiting warming to 1.5°C

How the level of global warming affects impacts and/or risks associated
with the Reasons for Concern (RFCs) and selected natural, managed and

human systems

Five Reasons For Concern (RFCs) illustrate the impacts and risks of
different levels of global warming for people, economies and ecosystems

across sectors and regions.

Impacts and risks associated with the Reasons for Concern (RFCs)

[p

RFC1 RFC2 RFC3
Unigque and Extreme Distribution
threatened weather of impacts

systems events

RFC4
Global
aggregate
impacts

oA

OH

RFC5 Level
Large scale
singular
events

p— Undetectahle

of additional

impact/risk due
to climate change

Purple indicates very high
risks of severe impacts/risks
and the presence of
significant irreversibility or
the persistence of
climate-related hazards,
combined with limited
ability to adapt due to the
nature of the hazard or
impacts/risks.

Red indicates severe and
widespread impacts/risks.
Yellow indicates that
impacts/risks are detectable
and attributable to climate
change with at least medium
confidence.

White indicates that no
impacts are detectable and
attributable to climate
change.




The IPCC Global Warming Theory
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The IPCC "Computer Model” Science

100% of the warming since 1951 is anthropogenic

Natura! forcing

Natural forcing
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Do these GCMs results “prove” that the warming
since 1951 has been really due to anthropogenic forcing?




Regardless of the cause, do you think climate change is happening ?*

100%

A 2016 SURVEY OF AMERICAN
METEOROLOGICAL SOCIETY
MEMBERS ABOUT CLIMATE CHANGE
Initial Findings

‘GEORGE MASON UNIVERSITY
CENTER for CLIMATE CHANGE
(W communicaTion

I
(i =

Yos Mo Don't Know

Total Responses = 4091 96% 1% 3%

*Question was preceded by this statement: “Please read the following information: The American Meteorological Society (AMS) defines climate change as: "Any
systematic change in the long-term statistics of climate elements (such as temperature, pressure, or winds) sustained over several decades or longer. Climate
change may be due to: natural external forcings, such as changes in solar emission or slow changes in the earth’s orbital elements; natural internal processes of
the climate system; or anthropogenic forang.”




96% thinks climate change is
happening BUT the IPCC claims
that humans caused 100% of
the warming since 1951, while...

A 2016 SURVEY OF AMERICAN
METEOROLOGICAL SOCIETY

MEMBERS ABOUT CLIMATE CHANGE
Initial Findings

Do you think that the climate change that has occurred over the past

50 years has been caused...

the experts who disagree with the

IPCC are....

Largely or
entirely by
natural events
(81% to 100%)

More or less
equally by
human activity
and natural
events

14% 7% 5%

Largely or
entirely by
human activity
(81% to 100%)

Mostly by human
activity (60% to
80%)

Mostly by
natural events
(60% to 80%)

Total Responses = 4004 29% 38%

b
GEORGE MASON UNIVERSITY
#~Y88 CENTER for CLIMATE CHANGE
(W' communicaTION

Don't know

There has been
no climate
change over the
past 50 years

1%

https://gmuchss.az1.qualtrics.com/CP/File.php?F=F_cRR9IW0HZaiVV3




Over the next 50 years, to what extent can additional climate change
be avoided if mitigation measures are taken worldwide (such as
substantially reducing emissions of carbon dioxide and other
greenhouse gases)?

A 2016 SURVEY OF AMERICAN
METEOROLOGICAL SOCIETY
MEMBERS ABOUT CLIMATE CHANGE

Initial Findings

CENTER for CLIMIATE CHAN
'COMMUNICATION
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Total Responses = 3998 1% 17% 42% 25% 9% 1%




Is the AGWT built on rocks or on sand?
(Are the AGWT models validated?)
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Computer Simulation Models
must be
Verified and Validated

- Real World

Validation : Model
: Sveis & Validation
Ng

Computerized
Model

Verification




Are the IPCC climate models still validated?

Little Ice Age > The natural variability is
——— large; CO_Z r_ecords do _
Warm Period not explain it; The sun is

S G R SR A R R the main driver.
1000 AD 1500 AD

Year

Temperature Change ("C)

-

_ . . ; The natural variability is
— EEEERIT ... e e small (0.2 °C); Only CO,
explains the warming
since 1900; The IPCC
climate models are
claimed to have been
validated & used for
future climate scenarios.
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In 2000 it was claimed that the AGWT models

have been “validate d”'
- EBM Input forcmgs

burning, and mineral dust. Although regional
climate change is almost certainly influenced

e by these complex dynamic and thermody-
7 namic feedbacks, the striking agreement seen
in this study between simple model calcula-
tions and observations indicates that on the
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In the IPCC 2013
The last-millennium GCM simulations and reconstructions
diverge
The models do not reproduce the Medieval Warm Period

(a) Radiative forcing (VW m=)
o
T wTOT

-5 ]

Volcanic

3
=
=
=]
@
25
E
=
=

10 1400
Time (Year CE)

(b) Reconstructed (grey),/nd simulated (red) NH temperature

AGWT models reproduce
Hockey Sticks !

Te;np. anomaly wrt 1500 - 1850 (°C)
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Box TS.5, Figure 1 -

(a) 850—-2000 PMIP3/CMIP5 radiative forcing due to volcanic, solar and well-mixed green- house gases.

(b) 850—-2000 PMIP3/CMIP5 simulated (red) and reconstructed (shading) Northern Hemisphere (NH) temperature changes.



Nearly Every Century Experiences

Global Warming or Cooling

Temperature Reconstruction* for N. Hemisphere, 1 - 2000 AD
Shows Modern Warm Period Not Exceptional
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*Ljungqvist, F.C. 2010. A new reconstruction of temperature variability
in the extra4ropical Northern Hemisphere during the last twe millennia.

Geografiska Annaler: Physical Geography, Vaol. 92 A(3), pp. 339-351,
September 2010. DOI: 10.1111/1.1468-0459.2010.00399.x




Other serious failures of the IPCC climate models

Comparison between 12-month moving average
of the Arctic and Antarctic sea-ice area index

records against model prediction.
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Comparison between Holocene temperature Liu, Z., Zhu, J., Rosenthal, Y., et al., PNAS, vol. 111 (2014), E3501-E3505.

. Scafetta, N., Mazzarella, A.,Advances in Meteorology, 481834, 2015.
records (red and blue) and climate model Douglass, D. H., Christy, J. R., Pearson, B. D., Singer S. F.: International

predictions Journal of Climatology, 28, 1693-1701, 2007.




A Test of the Tropical 200- to 300-hPa

Wi Bt il Other serious failures of the
:‘I:::a:r::lt:: :m:ir::::n:‘:‘nacr::sl':lv;r:ltyof Guelph, Guelph, Canada, *Farth System Science Center, University of IP C C CIim ate m O d EIS

Alabama in Huntsville, Huntsville, AL, USA

Abstract Overall climate sensitivity to COz doubling in a general circulation madel results from a complex
system of parameterizations in combination with the underlying model structure. We refer to this as the
model's major hypothesis, and we assume it to be testable. We explain four criteria that a valid test should
meet: measurability, specificity, independence, and uniqueness. We argue that temperature change in the
tropical 200- to 300-hPa layer meets these criteria. Comparing modeled to observed trends over the past
60 years using a persistence-robust variance estimator shows that all models warm more rapidly than
cbservations and in the majority of individual cases the discrepancy is statistically significant. We argue that
this provides informative evidence against the major hypothesis in most current climate models.

The CO, modeled hot spot

Canadian model run 3
1958-2017 Trends( C/Decade

o
)
a.
o
0.
0
0.
0.
0

o

Pressure(mb)

Latitude 1 i

1960 1870 1980

Figure 1. Warming pattem in Canadian model 1958-2017. Horizontal axis shows latitude, vertical axis show:
color shows warming trend magnitude.

Figure 3. Model and observational data.

McKitrick, R., & Christy, J. (2018). A test of the tropical
200- to 300-hPa warming rate in climate models. Earth
and Space Science, 5, 529-536.




The larger preindustrial climate variability
Is better reproduced by solar records
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Variability of the Earth's Climate
versus
CMIP5 GCM simulations in the absolute T scale

End of Oxygen Temperature of Planet Earth
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The CMIP5 GCMs, using the same 20th century forcings (!), predict all
Earth's climates of the last 5,000,000 years (and more) !




The mean annual temperature
in Miunchen is about 9 °C,
however....

Temperature variation in Miinchen
as estimated by the CMIPS GCMs

48-months averages™|
] ! ]

1880 1900 1920 1940 1960 1980 2000 2020
year




Comparison among estimates of the climate sensitivity to the radiative forcing
induced by a doubling of atmospheric CO, concentration.

<@—]—> IPCC ARS Climate Models

& |PCC AR5 Assesment
("likely" range)
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Relative Variance

Natural Climate Oscillations
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The IPCC climate mOdelS dO nOt N. Scafetta / Earth-Science Reviews 126 (2013) 321-357
reproduce the natural oscillations at
9.1, 10-11, 20, 60 year perlods
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Natural Climate Oscillations:
60-year period

Pacific Decadal Oscillation Indian moonsoon
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Scafetta N., 2012. A shared frequency set between the historical ? Bgiear I:A-D:I}‘EUO
mid-latitude aurora records and the global surface temperature.
Journal of Atmospheric and Solar-Terrestrial Physics 74, 145-163.
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Are the Climatic Oscillations
. (A) length of day - LOD (ms);
| nte rna | |y or Astro nom |Ca| |y (B) Zonal index (between 35°N and 55°N) - ZI (hPa);

(C) Reconstruction of the North Atlantic Oscillation - NAO (hPa);

i n d u C e d f) (D) Sea surface temperature - SST (°C).

Earth’s rotation
on its own axis

The Equator
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Mazzarella, A., Scafetta, N., 2018. Climate Dynamics, DOI: 10.1007/s00382-018-4122-6




—= = meridional flow

If the westerly flow is strong, the zonal index (ZI) is high. In contrast, as the amplitude
of the Rossby waves increases, the flow becomes less zonal and more meridional (i.e.
it follows a north-south or longitudinal path). The Zl is then said to be low. For low ZI
the net result is a significant latitudinal energy transfer which brings an increase of

global surface temperature.




Earth’s Rotation
Integrated ZI : 1ZI(t)= 1Z1(t-1) +ZI(t)
Integrated NAO: INAO(t) =INAO(t-1) +NAO(t) %

Earth’s rotation
on its own axis

The Equator

\Earth’s Axis

Interval /1 ~ NAQO o LOD

Variability NAO ~ LOD

Astronomical  1ZI ~ INAO o« ~ALD = ~LOD
forcing INAO ~ SST ~~LOD




Time plot of standardized yearly values of LOD and 1ZI:
(A) Raw values;

(B) Smoothed according to a 5-yr running mean;

(C) Smoothed according to a 11-yr running mean;

(D) Smoothed according to a 23-yr running mean.
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Time plot of standardized yearly values of LOD and SST: (A) Raw
values; (B) Smoothed according to a 5-yr running mean; (C)
Smoothed according to a 11-yr running mean; (D) Smoothed
according to a 23-yr running mean.
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A large pre-industrial climatic variability is confirmed

(A) SST modelled using LOD
(B) SST modelled using INAO
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The Sun's Wobbling
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Scafetta, N., 2014. The complex planetary synchronization
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Evidence that the climate system is regulated
by astronomical oscillations
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A Planetary theory of solar variations

Extract of a Letter from Prof. K. Wolf, of Zurich, to Mr.
Carrington, dated Jan. 12, 1859.

( Translation.)
400 Years of Sunspot Observations

Modern
The ~11-year sunspot cycle Mraximum

Dalton
Minimum

Maunder N .
:  Minimum _ » | o N ~Jl A

V

ALt

¥ | - |
IOy LA WAUATER
1600 1650 1700 1750 1800 1850 1900 1950 2000

the same planets, the cpnqlusion seems to be inevitable, that my
conjecture that the variations of spot-frequency depend on the
influences of Venus, Farth, Jupiter, and Saturn, will not
prove to be wholly unfounded. The preponderating planet




The three main frequencies of the 11-year solar cycle
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Figure 12: [A] Power spectrum of the sunspot record from 1749 to 2010 highlighting three peaks within

the Schwabe frequency band (period 9-13 wears) including the two major tides of Jupiter and Saturn.
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Scafetta N., 2012. Does the Sun work as a nuclear fusion amplifier of planetary tidal forcing? A proposal for a physical
mechanism based on the mass-luminosity relation. Journal of Atmospheric and Solar-Terrestrial Physics 81-82, 27-40.




Three-frequency solar harmonic model vs. temperature
reconstructions (~61 yr, ~115 yr, ~980 yr cycles)
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Versus a new
grand solar minimum

N. Scafetta / Journal of Atmospheric and Solar-Terrestrial Physics 80 (2012) 296-311

SSN record (cycles # 19-24) (up to Feb/2012)"
(211-year shifted) SSN record (cycles # 1-8)
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The stable orbital resonances of the Jupiter-
Saturn-Uranus-Neptune system
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Harmonic H(t) = hosa(t) + h115(t) + heo(t) + hoo(t) + h10.4(2)
Climate Model +ho1(t) + B * m(t) + const,
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Scafetta, N. 2013. Discussion on climate oscillations: CMIP5 general circulation models versus a semi-
empirical harmonic model based on astronomical cycles. Earth-Science Reviews 126, 321-357.




IPCC 2013 6-frequency + anthropogenic
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Scafetta's presentation at the
Environmental Protection Energy (EPA, DC, USA)
02/26/2009

ige and Its X | +
&  htips://www.epa.gov/environmental-economics/climate-change-and-its-causes-discussion-about-some-key-issues I

ﬁ_: An official website of the United States government.

o We've made some changes to EPA.zov, If the information you are looking for is not here, you may be able to find it on the EPA Web Archive or the January 19, 2007 Web Snapshot. Close X

2] United States
-\-." E PA Enviro nmental Protection
gency
Environmental Topics Laws & Regulations About EPA Search EPA.gov Q

TN P, S
Related Topics: Environmental Economics CONTACTUS  SHARE I\f/'l @| I'\('?/ &)
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Scafetta's forecast shown at the
Environmental Protection Energy (EPA, DC, USA)
02/26/2009 |
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1 O'yea rS Iate r Scafetta, N. 2013. Discussion on climate

oscillations: CMIP5 general circulation models

How is Scafetta’s Seonomiea s, Ear Saoncs Rerns 126,
forecast performing?

321-357.
Scafetta's 2013 model vs. IPCC CMIPS prediction (relative to pre-industrial temperatures)

 Scafetta's 2013 forecast (extending his EPA 2008 model) calibrated on HadCRUT4. Published on ESRs

_ http://dx.doi.org/10.1016/j.earscirev.2013.08.008 0

~The rcp45 + rcp60 + rcp85 CMIFS simulations are first cross-calibated in the period 1861-2018

Ly
=]
[
o
—

]
—
Lo
o0
=
£
a
=
-
i
Q
=
Lt
L]
2.
E
o
C
=
[l
E
i1
'_

'“f....S.eat.em.ber,;’z.oia."(.:“ e
HadCRUT4 ﬁ Global Surface Temperature (black)

HadCRUTB o Glebal Surfa-:}e Temperature (original AprlleD[]B} [red)

1996 2000 2004 2008 2012 2016 2020

year




Temp. Anom, (°C) (relative to 1861-1900)

("C) (relative to 1861-1900)
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Eccentricity variation of
Jupiter and Saturn
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60 and 1000 years cycles
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- A pulsing Heliosphere -
An interplanetary dust-cloud
forcing?

Cloud Cover (%)
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Fig. 19. Global surface temperature (black) against monthly variations in total global
cloud cover since July 1983 ( red). Correlation coefficient: r, = —0.52, for 318 points
P(|r] = |rs|) = 0.0005. The cloud data are from the Intemational Satellite Cloud
Climatology Project (ISCCP). Cloud data from http://isccp.giss.nasa.gov/pub/data/
D2BASICS/B8glbp.dat




Conclusions

The periodic movement of the planets of the solar system
generates a set of stable resonances
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Conclusions

« Climate models used to interpret the global climate
change of the past and predict future climate warming
fail by a large margin. They significantly overstimate the
effect of GHGs and understimate solar-astronomical
forcings, which are characterized by specific harmonics
(e.g.: 9.1 yr, 10-12 yr, 20 yr, 60 yr, 100-150 yr,1000 yr).

The evidences from corrected climate models suggest
that in the 21th century the global climate will warm less
than 2 °C suggesting that climate change adaptation
policies could address most of the negative
consequences of a climate change. Mitigation policies
should be moderate.
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