1

Endlager, Radioaktivität, Wissenschaft

Natürlich wird sie nicht von Fachleuten geleitet, sondern von Politikern. Vorsitzender ist Stefan Studt (Jurist), „Managing Director“ Steffen Kanitz (Dipl. Kaufmann).

Der von dieser Behörde vorgestellte Zeitplan, von dem natürlich niemand annimmt, dass er eingehalten wird, sieht so aus: Bis 2031 hat man einen Standort gefunden, und ab 2050 kann eingelagert werden. Ähnliche Zeitpläne hatte man beim Bau der gotischen Kathedralen. Auch diese dienten keinem praktischen Bedürfnis, sondern wurden rein aus Gründen des Glaubens errichtet. Allerdings müssen auch Nichtchristen zugeben: Die Ergebnisse können sich sehen lassen. Das wird beim Endlager nicht der Fall sein.

Neben der Politik soll es eine umfangreiche Beteiligung der Öffentlichkeit geben. Man wird wohl auf die entsprechenden Forderungen des BUND eingehen: „Es braucht für einen Verständigungsprozess tatsächliche Mitbestimmung im Sinne von klar definierten Mitentscheidungsbefugnissen der Betroffenen, die deutlich über eine Konsultation hinausgeht. Umweltverbände und Anti-Atom-Initiativen müssen finanziell so ausgestattet werden, dass sie Anwält*innen und Gutachter*innen in den Begleitprozessen finanzieren können (Gleiche Augenhöhe).“

Alle an der Endlagersuche Beteiligten, oder solche, die sich beteiligen möchten, streiten ab, rein einem Glauben zu dienen. Nein, im Gegenteil, sagen sie, alles soll nach wissenschaftlichen Kriterien entschieden werden.

Aber welche wissenschaftlichen Gründe könnte es geben, das bereits vorhandene Bergwerk Gorleben abzulehnen und einen anderen Standort zu suchen? Medizinische? Höhere Sicherheit vor Strahlen, weniger Krankheiten und Todesfälle? Da müsste man erst einmal zu einer rationalen, wirklich wissenschaftlichen Beurteilung biologischer Strahlenwirkungen kommen.

Leider gibt es ein Spektrum von Meinungen, und in der Öffentlichkeit liebt man die schrecklichsten Szenarien.

Hier eine Liste der Grundauffassungen. Alle werden von Leuten vertreten, denen man nicht absprechen kann, Wissenschaftler zu sein. Die Mehrzahl hat den Doktortitel, viele sind Professoren.

 

  1. Grüne

Ionisierende Strahlung gehört zu den gefährlichsten Einwirkungen auf Mensch und Natur. Schon die natürliche Hintergrundstrahlung verursacht epidemiologisch nachweisbare Gesundheitsschäden. Zeitschrift „Strahlentelex“: „Krebserkrankungen und Säuglings-sterblichkeit nehmen auch mit der Höhe der natürlichen Hintergrundstrahlung zu. Dabei beobachteten Dr. Alfred Körblein und Prof. Dr. Wolfgang Hoffmann in Bayern ein fünffach höheres Krebsrisiko, als von der internationalen Strahlenschutzkommission (ICRP) geschätzt.“

Daher ist es verantwortungslos, kerntechnische Anlagen zu betreiben, welche dieses Risiko noch erhöhen. Zu ermitteln, welche Steigerung der Strahlenintensität (Strahlungsleistung, Dosis pro Jahr) von solchen Anlagen ausgeht, wäre das falsche Vorgehen. Man muss die meist schlimmen Wirkungen betrachten. Diese lassen sich durch kreative Auswertung medizinischer Statistiken finden. Da die Verursacher bekannt sind, erübrigen sich Dosismessungen. Ein Beispiel sind die Erkenntnisse von Dr. Hagen Scherb, Helmholtz-Zentrum München: „Im Umkreis von 35 km um Anlagen in der Schweiz und in Deutschland ist der Verlust von 10.000 bis 20.000 Lebendgeburten bei Mädchen im Verlauf der letzten 40 Jahre nachweisbar.“Ähnliches finden Scherb und Mitarbeiter auch in anderen Ländern. Herr Scherb wird viel zu Tagungen eingeladen und genießt die Beachtung der Medien.

 

  1. IPPNW

(International Physicians for the Prevention of Nuclear War)

 

Diese Vereinigung gehört zur grünen Wissenschaft, d.h. sie ist an Dosis-Wirkungs-Beziehungen weniger interessiert. Sie hat aber doch einen Risikofaktor definiert, nämlich 0,2 tödliche Krebsfälle pro Sievert (Sv). Das bedeutet: Erhalten 100 Personen je eine Strahlendosis von 1 Sv, dann ist mit 20 zusätzlichen Krebsfällen zu rechnen. Die Vorstellung, dass Strahlung statistisch wirkt, den einen erwischt es, den anderen nicht, wird auch sonst anerkannt. Nicht jedoch das daraus abgeleitete Konzept der Kollektivdosis, welches für IPPNW und andere ein Dogma darstellt.

 

Am besten lässt sich dies Konzept anhand einer Lotterie erklären. Dem Risikofaktor entspricht die Gewinnwahrscheinlichkeit.

Lose ∙ Faktor = Gewinne.

100 Lose: 100 ∙ 0,2 = 20 Gewinne.

Nun wird bei Strahlung, und hier hört der Konsens auf, angenommen: Der Faktor sinkt linear mit der Dosis. Bei 0,1 Sv = 100 mSv ist der Faktor 0,02, bei 1 mSv = 0,0002. Sind aber um so mehr Menschen betroffen, bleibt die Zahl der Strahlenopfer gleich. Bei der Lotterie stimmt die Überlegung. Gewinnerwartungen seien 0,2; 0,02 und 0,0002, Zahl der Lose 100, 1.000 und 100.000.

 

100 Lose:        100 ∙ 0,2 = 20 Gewinne

1.000 Lose:     1.000 ∙ 0,02 = 20 Gewinne

100.000 Lose: 100.000 ∙ 0,0002 = 20 Gewinne

 

Auch ist es ganz egal, ob die Lose an einem Tag oder im Verlauf eines Jahres verkauft werden. Die Strahlendosis mag noch so klein sein, multipliziert mit der nötigen Anzahl der Betroffenen erhält man doch die gewünschte Anzahl von Toten. So lässt sich aus öffentlichen Strahlenmessungen noch einiges herausholen.

 

  1. ICRP

(International Commission on Radiological Protection)

Das ist die Dachorganisation aller offiziellen Einrichtungen zum Strahlenschutz. Deren Empfehlungen liegen der Strahlenschutz-Gesetzgebung aller Staaten zugrunde. Auch ICRP verwendet einen Risikofaktor. Mit abnehmender Dosis wird das Risiko proportional geringer. Allerdings ist der Faktor nur ein Viertel so groß wie bei IPPNW, nämlich 0,05 Fälle pro Sv. Er wurde aus den äußerst umfangreichen Daten über die Folgen der Atombombenabwürfe über Hiroshima und Nagasaki abgeleitet.

ICRP setzt eine lineare Abhängigkeit der Effekte bis zum Nullpunkt voraus. Daraus folgt die LNT-Hypothese: Linear no threshold, also keine untere Schwelle der Strahlenwirkung. Daher muss die Strahlenexposition von Menschen so klein wie möglich sein:

ALARA: As low as reasonably achievable

Nach dieser Vorstellung ist auch die natürliche Umgebungsstrahlung schädlich. Das hierdurch bedingte zusätzliche Risiko für Krebs wurde u.a. von Dr. Jacobi, Helmholtz-Zentrum, auf der Grundlage der ICRP-Annahmen errechnet. Sein Ergebnis: Ein zusätzliches Risiko ist anzunehmen. Es ist aber zu klein, um sich in epidemiologischen Studien zu zeigen. Das gilt auch für Gegenden auf der Welt mit erheblich höherer natürlicher Umgebungsstrahlung. „Die Ergebnisse dieser (weltweiten) Studien lassen keine Korrelation mit der natürlichen Strahlenbelastung erkennen.“

 

  1. Praktiker

Die LNT-Hypothese wird abgelehnt. Es hat keinen Sinn, mit Strahlenschäden zu rechnen, die sich nicht nachweisen lassen. Das Konzept der Kollektivdosis wird abgelehnt. Der Vergleich mit Lotterielosen ist für biologische Systeme nicht anwendbar, da diese kleine Einwirkungen vertragen oder bald reparieren.

Beispiel Schnaps (Dr. Lutz Niemann): Trinkt jemand an einem Tag 2 Liter, ist er anschließend tot. Werden die 2 l als 20 ml-Schnäpschen an 100 Personen verteilt, dann sind das zwar zusammen wieder 2 l, aber gibt es deswegen einen Todesfall? Oder unser Schnapsfreund gönnt sich an 100 Tagen je einen 20 ml-Schnaps, stirbt er davon?

Bei einmaligen Dosen von 150 mSv findet man keine Wirkungen. Es wurde gefordert: Werden Personen irgendwo geringeren Jahresdosen als 250 mSv ausgesetzt, so sollte sich keine Behörde darum kümmern (Norbert T. Rempe).

Im Jahr 2015 wurde von einer großen Gruppe US-amerikanischer Strahlenwissenschaftler eine Petition an die zuständige Behörde NRC (Nuclear Regulatory Commission) gerichtet, man solle LNT und ALARA nicht mehr den Strahlenschutzstandards zugrunde legen.

Die Behörde lehnte ab. Aber ihre Ablehnung war vorsichtig formuliert, es war keine kategorische Ablehnung für alle Zeiten, sondern: „For the time being and subject to reconsideration.“

 

  1. Hormesis

(Positive Strahlenwirkung)

Es gibt mehrere tausend Untersuchungen, in denen positive Wirkungen niedriger Strahlendosen gefunden wurden. In Deutschland machte dies besonders Prof. Feinendegen, Düsseldorf. Ein bekannter amerikanischer Wissenschaftler, James Muckerheide, schrieb 2001 (nach seiner Pensionierung): „It‘s Time to Tell the Truth About the Health Benefits of Low-Dose Radiation: (übersetzt) „Es wurde nachgewiesen, dass Strahlung im niedrigen Dosisbereich positive biologische Wirkungen verstärkt. Dies betrifft Immunsystem, enzymatische Reparatur, physiologische Funktionen, Eliminierung von Zellschäden, einschließlich der Verhinderung und Entfernung von Krebs- und anderen schädlichen Zellen. Trotzdem erkennen Strahlenschutzpolitik und Strahlenpraxis diese vertrauenswürdigen Daten nicht an. Sie stützen sich stattdessen auf unzuverlässige, nicht eindeutige, falsch interpretierte und manipulierte Daten.“

Die Vorstellung der positiven Wirkung kleiner Dosen führt zu dem Schluss, dass die natürliche Umgebungsstrahlung für uns gut ist, mehr wäre besser. Ganz ohne Strahlung ginge es uns schlechter. Das konnte natürlich nie an Menschen nachgewiesen werden. Es gibt aber Untersuchungen an Mikroorganismen und Fischlaich, welche in sehr strahlenarmer Umgebung, nämlich in Salzbergwerken, Schäden zeigten. Eine solche Untersuchung wurde von H. Bühringer und H.-J. Kellermann, Bundesforschungsanstalt für Fischerei, in der Asse durchgeführt.

Soweit die Strahlenbiologie. Sie könnte die Frage beantworten: „Warum?“ Muss man mit radioaktiven Stoffen wirklich so aufwändig umgehen? Die Frage „wie“ betrifft die Geologie. Da sind die Ansichten nicht so unterschiedlich, oder doch?

 

 

 

 




Blackout (3) – Kann ich mich vorbereiten?

Die Bundesregierung will bis zum Jahre 2022 – notabene in drei Jahren – Kohlekraftwerke mit 12.700 Megawatt stilllegen. Die heutige Höchstlast beträgt etwa 75.000 Megawatt. Zu gut deutsch: Die Politik will bis 2022 fast ein Fünftel der elektrischen Grundlasterzeugung des Landes plan- und ersatzlos stilllegen oder gar durch wetterabhängige Kraftwerkskapazität ersetzen, die an windstillen trüben Tagen noch nicht einmal 10 Prozent ihrer Leistung erbringen können. Vergessen Sie nicht – ein großer Blackout ist eine nationale Katastrophe mit unübersehbaren Folgen für die Bevölkerung und die Wirtschaft. Ist ein Notfall erst eingetreten, ist es für Vorsorgemaßnahmen meist zu spät. Ein Blackout kommt plötzlich und ohne jede Vorwarnung. Es ist eher umgekehrt – schlechte Nachrichten über die Blackout-Gefahr werden von den grünliebenden Journalisten und staatlichen Stellen nur verdruckst verbreitet.

Die Versorgung ist gesichert“, sagt der Wirtschaftsminister Altmaier, der bekanntermaßen Jurist ist. Er sagt es wider besseres Wissen. Ein anderer Bundesminister, der in seiner Jugend mal Messdiener war, behauptete einst mit ähnlich pathetischem Wahrheitsgehalt: „Die Rente ist sicher“.

Im Teil 1 dieses Beitrages haben wir uns damit befasst, wie sich so ein Blackout anfühlen könnte. In diesem Teil wollen wir mal schauen, wie man sich wenigstens ein bisschen darauf vorbereiten kann.

Wie lange könnte ein Blackout dauern?

Wenn ein Landesnetz einmal zusammengebrochen ist, dauert es eine ganze Weile, bis die Leistung wiederaufgebaut werden kann. Man benötigt erst einmal ein paar Kraftwerke, die „schwarzstartfähig“ sind. Das sind weder Windenergieanlagen, die ihre Flügel erst mal mit Strom in die Anfahrposition drehen müssen noch normale Kraftwerke, die Pumpen und Hilfsdampfkessel brauchen, um zu starten. Schwarzstartfähige Kraftwerke können ohne äußere Versorgung durch das Netz angefahren werden, weil sie eigene genügend große Dieselgeneratoren oder Gasturbinen haben, um den Anfahrprozess mit Strom zu versorgen. Davon gibt es in Deutschland nach Angaben der Bundesnetzagentur ganze 120 Kraftwerksblöcke. Das entspreche einer Leistung von 9,7 Gigawatt.

Erst einmal muss der Schaden beseitigt oder isoliert werden, der den Netzausfall verursacht hat. Dann muss das Netz in kleine Subnetze aufgetrennt werden.

Sind dann einige Kraftwerke wieder angefahren worden, kann der Lastverteiler das Netz sukzessive aus den kleinen separierten Teilen wiederaufbauen – das heißt: Stück für Stück zusammenschalten und parallel dazu Kraftwerke hochfahren. Hierbei müssen Leistung und Verbrauch stets in Waage gehalten werden, sonst bricht das Netz wieder zusammen.

Wenn man versuchen würde, das Netz einfach wieder zuzuschalten, würden die bereits gestarteten Kraftwerke sofort durch Überlastung ausfallen, da ja überall jede Menge Verbraucher eingeschaltet am Netz hängen und die Leistungsbilanz stören. Dieser Vorgang des Netzwiederaufbaus kann mehrere Tage dauern.

Ich schätze ein, dass etwa eine Woche vergehen kann, bis das Netz wieder zur Verfügung steht. Richten Sie sich also auf eine Woche ohne Versorgung ein. Halten Sie solche Dinge in Ihrem Vorrat, die Sie auch normalerweise konsumieren.

Was muss man für einen Blackout vorrätig halten?

Die Maslowsche Bedürfnispyramide hilft uns, diese Frage zu beantworten. Da der Versorgungsausfall nur eine Woche beträgt, können wir mit den Grundbedürfnissen beginnen: Hierzu zählt Maslow (1943) alle Grundbedürfnisse, die zum Erhalt des menschlichen Lebens erforderlich sind, wie Atmung, Wasser, Nahrung, Schlaf, Fortpflanzung, Homöostase (z.B. Hütte, Witterungsschutz).

Eine Woche ohne Essen halten die meisten erwachsenen Menschen problemlos aus, wenn sie gesund sind. Nicht so allerdings kranke oder sehr alte Menschen und Kleinstkinder. Denken Sie auch an Diabetiker und Allergiker.

Wasser: Da man damit rechnen muss, dass die Leitungswasserversorgung schon nach wenigen Stunden ausfallen kann, sollte für jedes Familienmitglied ein Vorrat an 1,5 Liter (große Mineralwasserflasche) für eine Woche bereitstehen. Das heißt für eine dreiköpfige Familie brauchen Sie einen Vorrat von 20 Flaschen.

Wenn der Strom plötzlich ausfällt, weiß man nicht, wann er wiederkommt. Ich empfehle daher, umgehend und prophylaktisch die Badewanne mit kaltem Wasser volllaufen zu lassen. Dieses kann dann, streng rationiert, als Brauchwasser das Leben sehr erleichtern.

Bedenken Sie auch, dass bei einem Wasserausfall auch die Toilettenspülung mit ausfällt. Sie können Ihre Toilette nicht mehr wie gewohnt benutzen. Auch ein Campingklo dürfte beim Blackout für eine Familie innerhalb kurzer Zeit überfordert sein. Ich persönlich würde mir mit Plastik-Abfallsäcken helfen, die fest zugeschnürt lagerbar sind, bis sich das Leben wieder normalisiert. Gut ist es, wenn sie für die Benutzung über die Klobrille gezogen passen.

Ein Mensch stirbt nicht, wenn er sich eine Woche nicht waschen kann. Menschen fühlen sich aber besser, wenn sie sich reinigen können. Ein Vorrat an feuchten Wegwerftüchern kann den Komfort wesentlich erhöhen.

Nahrungsmittel: Für Nichtfaster ist die Vorstellung eines kompletten Nahrungsverzichtes von einer Woche wenig attraktiv. Für Kleinstkinder und Kranke besteht sogar die Notwendigkeit der Möglichkeit von regelmäßiger warmer Nahrungszufuhr. Sie brauchen also einen Spiritus-Campingkocher und einen Brennstoffvorrat für eine Woche. Fünf Liter Brennspiritus dürften reichen. Und denken Sie daran, die meisten Menschen haben wenig Erfahrung beim Umgang mit solchen Geräten. Die Feuerwehr können Sie wahrscheinlich gar nicht erreichen. Also ist ein Feuerlöscher eine gute Idee.

Die Vorratshaltung von Nahrungsmitteln muss pragmatisch sein, wenn sie funktionieren soll. Festmahle braucht es beim Blackout ohnehin nicht zu geben. Für Kinder brauchen Sie Trockenmilchpulver o.ä. Für Erwachsene ein paar Päckchen Nudeln, Reis, Linsen – alles was lange lagerfähig ist. Ein paar Soßen-Konserven tun gut, auch andere Konserven. Brot ist schwierig, daher rate ich ab. Futtern Sie erst den Tiefkühlschrank und den Kühlschrank leer, die werden sowieso auftauen.

Wenn Sie neue Nahrungsmittel als Ersatz für verbrauchte kaufen, stellen Sie diese immer nach hinten ins Regal. Für Kaffeeabhängige – vergessen Sie den Instantkaffee nicht.

Information/Kommunikation: Telefon, Fernsehen und Internet brechen beim Blackout binnen kurzer Zeit zusammen. Information kann lebenswichtig sein. Es ist davon auszugehen, dass die staatlichen Stellen den Rundfunk mit Notstromaggregaten aufrechterhalten können. Nehmen Sie Warnungen der staatlichen Stellen im Notfall ernst. Bleiben Sie besonnen.

Haben Sie daher ein batteriebetriebenes Radio bereit, natürlich mit einem entsprechenden Batterievorrat. Im Notfall haben Sie noch ein Autoradio. Einen Batterievorrat brauchen Sie auch für Ihre Taschenlampe. Bevorraten Sie eine ausreichende Zahl von Zündhölzern, Kerzen und sicheren Kerzenhaltern für die Familienmitglieder. Lassen Sie Kinder nicht mit brennenden Kerzen alleine.

Gesundheitsfürsorge: Man sollte stets einen gut gerüsteten Verbandskasten bereithalten, auch einen Mindestvorrat an benötigten Medikamenten. Durchfallmittel, Fiebersenker und Elektrolyte sollten darin sein. Ein gut bebilderter Erste-Hilfe-Führer kann von großem Nutzen sein.

Eine Erkältung ist das Letzte, was Sie bei einem Blackout brauchen. Ziehen Sie sich warm an, die Heizung wird nicht funktionieren, und die Wohnung wird kalt. Medizinische Hilfe für unvorhergesehene Fälle gibt es nur noch in Krankenhäusern. Begeben Sie sich im Notfall dorthin und wappnen Sie sich für jede Menge Komfortverlust.

Haben Sie einen ausreichenden Vorrat an Einweggeschirr und Besteck? Für unhygienische Angelegenheiten brauchen Sie Einweghandschuhe. Betreiben Sie nach Möglichkeit ein Minimum an Seuchenschutz. Dazu gehört die sichere und isolierende Lagerung von Müll und Ausscheidungsprodukten sowie ein Minimum an Hygiene.

Bargeld: Hier scheiden sich die Geister. Sie sollten stets etwas Bargeld im Hause vorrätig haben, da die Geldverteilung über die Banken und bargeldloses Zahlen ausfallen. Sollte der Blackout länger dauern, macht Bargeld Sie unabhängiger für Einkaufe auf einem eventuell entstehenden Notmarkt, das ist wichtig. Aber Bargeld macht Sie verwundbar bei Raubüberfällen.

Verhalten: Sicherheit kommt zuallererst, ohne Abstriche und ohne Kompromisse. Vorsicht, Vorsicht und nochmals Vorsicht ist angesagt. Sie können nicht mit fremder oder staatlicher Hilfe rechnen – um so willkommener, wenn Sie sie erhalten. Gehen Sie davon aus, dass Sie weder Polizei noch Feuerwehr noch dringende medizinische Hilfe rufen können. Verletzungen, Brände, Unfälle können unter solchen Umständen tödlich enden. Nachbarschaftliche Hilfe wird lebensnotwendig und lebensrettend sein. Leisten Sie sie, wenn Sie können.

Kümmern Sie sich als erstes um die Schwachen unter Ihren Lieben. Es ist besser, die gebrechlichen Eltern zu Hause zu beschützen, als im Pflegeheim auf angemessene Betreuung im Katastrophenfall zu hoffen. Also sollten sie – möglichst am Anfang einer solchen Ausnahmesituation, wenn die Straßen noch einigermaßen sicher sind – geholt werden.

Low profile – der gesellschaftliche Zusammenhalt wird durch einen Blackout an seine Grenzen geführt. Staatliche Schutzfunktionen für den Bürger können nicht genügend aufrechterhalten werden. Es gibt immer einen Bodensatz der Gesellschaft, der eine solche Ausnahmesituation für kriminelle Akte nutzen möchte. Plünderungen, Raub und andere schwere Delikte werden wahrscheinlich. Vermeiden Sie die Situationen. Bleiben Sie mit Ihrer Familie im Haus. Vermeiden Sie beleuchtete Fenster, wenn alles um Sie herum dunkel ist. Zeigen Sie nicht an, dass Sie Überlebensmittel haben – eine Dose Ravioli kann Sie das Leben kosten. Auch ein laufendes Notstromaggregat könnte Leute anziehen, von denen Sie lieber Abstand halten wollen.

Versuchen Sie, die Benutzung Ihres Autos zu vermeiden. Es wird für Sie kein Nachtanken geben, nur 14 von 1.600 Tankstellen in Deutschland haben ein Notstromaggregat, und die bleiben staatlichen Stellen und Helfern vorbehalten. Es wird kaum Hilfe bei Unfällen geben. Es kann zu Fällen von Fahrzeugraub kommen.

Liebe Achse-Leser, der Blackout wird durch Energiewende und Kohleausstieg wahrscheinlicher. Dies ist eine unvollständige Vorbereitungsanleitung ohne jede Gewähr, dafür muss sie aber auch keine Rücksicht auf politische Korrektheit nehmen.

Sicher haben Sie noch weitere gute Ideen, wie man sich schützen kann – teilen Sie diese mit uns und den anderen Achse-Lesern.

Den ersten Teil dieser Serie finden Sie hier.

Den zweiten Teil dieser Serie finden Sie hier.

Der Beitrag erschien zuerst bei ACHGUT hier




Radioaktiver Abfall aus Kernkraftwerken?

In verschiedenen Industrien, in der Medizin und der Forschung werden radioaktive Substanzen verwendet, die dann irgendwann Abfall sind. Jedoch ist deren Menge klein gegenüber dem Abfall aus Kernkraftwerken, und nur dieser spielt in der öffentlichen Diskussion eine Rolle. Daher werde ich mich darauf beschränken.

Leute mit grüner Gesinnung regen sich über den radioaktiven Abfall aus Kernkraftwerken so sehr auf, dass sie meinen, dieser Abfall könnte das Ende der Menschheit herbeiführen. Solche Ansichten hört man z.B. in der kirchlichen Tagungsstätte Loccum, die nur noch teilweise der christlich-evangelischen, hauptsächlich aber der Ökoreligion dient.

So sagte dort der Landesbischof Ralf Meister:

„Allerdings können wir Aussagen machen zu einer hochgiftigen Strahlung, die noch über viele hunderttausend Jahre so giftig sein wird, dass sie das Menschleben und das Leben auf dieser Erde in ihrer Existenz bedroht.“

Und die atompolitische Sprecherin der Grünen im Bundestag, die Kunsthistorikerin Sylvia Kotting-Uhl:

„Er (der radioaktive Abfall) ist da und stellt für die heutige und zukünftige Gesellschaften eine existenzielle Bedrohung dar“ und weiter „Atommüll gehört zum Tödlichsten, was es auf der Erde gibt. Er tötet durch Strahlung und ist hochgiftig. Bis das Risiko aus diesen Stoffen halbwegs erträglich geworden ist, vergeht eine Million Jahre. Auch dann noch haben einzelne Nuklide eine hoch umweltgefährdende Aktivität. Den Müll über einen derart langen Zeitraum so aufzubewahren, dass er Mensch und Umwelt nicht gefährden kann, scheint schier unmöglich.“ (Loccumer Protokoll 25/11)

Solche Beurteilungen setzen die völlige Unkenntnis der Naturwissenschaften und Schwierigkeiten bereits bei den Grundrechenarten voraus. Sie sind auch auf anderen Gebieten üblich und Grundlagen der derzeitigen Politik. Wie ist das in unserer auf Naturwissenschaft, Mathematik und Technik beruhenden Zivilisation möglich?

Könnte ein alter Römer wieder zum Leben erweckt und in unsere Zeit versetzt werden, würde er staunen: Er kann mit Leuten in Rom von hier aus direkt sprechen, die Rückreise würde weniger Stunden dauern als zu seiner Zeit Wochen, Licht und Wärme schaltet man einfach ein, und vor allem: Es gibt hier nie einen Mangel an Lebensmitteln. Aber gänzlich verblüffen würde den alten Römer, dass, von wenigen Ausnahmen abgesehen, unsere Politiker nichts damit zu tun haben. Schon in der Schule wollten oder konnten sie das, was unserer Zivilisation zugrunde liegt, nicht lernen. Regierung und Bundestag sind etwa so zusammengesetzt wie der Senat in Rom vor mehr als 2.000 Jahren. Es dominieren die Juristen. Zählt man noch dazu, was uns als „Intellektuelle“ vorgestellt wird, ergibt sich folgende Situation (Vince Ebert):

„Die öffentliche Diskussion über Energieversorgung, Risikobewertung, Gentechnik, Klimawandel, Stammzellen und Digitalisierung wird zu 97 Prozent bestimmt von Geisteswissenschaftlern, Theologen, Schriftstellern, Juristen, Theaterleuten und Ökonomen.“

Als Angehöriger der MINT-Fächer (Mathematik, Informatik, Naturwissenschaft, Technik) gehöre ich (Physiker) da zu einer Randgruppe. Jedoch werde ich von diesem Standpunkt aus über radioaktive Abfälle berichten.

Was immer die Technik an radioaktivem Abfall erzeugt, die Aktivität wird winzig bleiben gegenüber der natürlichen Radioaktivität unserer Erde. Jedoch kann die spezifische Aktivität, Becquerel (Bq) pro kg, vieler technischer Abfälle unnatürlich hoch sein, und solche Abfälle müssen dann sorgfältig entsorgt werden. Es gibt auch Möglichkeiten, radioaktive Abfälle umzuwandeln (Transmutation), aber das wird bisher nirgends gemacht.

Ich gehe anhand einer Liste von Fragen vor, die mir Herr Dr. Peters, Deutscher Arbeitgeberverband, zugeschickt hat.

  1. Was ist Atommüll und in welcher Form wird er eingelagert?

„Atommüll“ ist eine Bezeichnung der Medien. Radioaktive Elemente entstehen in Kernkraftwerken auf zwei Arten. Uran- und Plutoniumkerne werden in zwei und manchmal auch drei Teile gespalten. Diese Bruchstücke sind Elemente mit zu viel Energie, die sie per Strahlung loswerden wollen. Der zweite Weg ist Aktivierung durch Neutronen. Nimmt Uran, oder auch z.B. Cobalt im Strukturmaterial ein zusätzliches Neutron in seinen Kern auf, dann ist ebenfalls ein Radionuklid entstanden.

Unvermeidlich gelangen solche radioaktiven Elemente, auch Nuklide genannt, ins Abwasser und in die Abluft. Dort werden sie so weit wie möglich herausgefiltert, und die Filtermaterialien stellen dann schwach aktiven Abfall dar. Insgesamt beträgt die Aktivität dieser Filtermaterialien etwa 1 % aller Kernkraftwerksabfälle. Fässer mit solchem Inhalt darf man anfassen. Internationale Bezeichnung: LLW (Low Level Waste).

Bei Aktionen wie der Demontage von Reaktorkernen fallen Abfälle mit höherer Aktivität an. Auch diese kommen in Fässer, die man aber nicht mehr anfassen sollte. Die Fässer werden in Abschirmungen transportiert. Obwohl sich jede Strahlung letzten Endes in Wärme umsetzt, werden solche Fässer aber kaum warm (unter 2 kW/m³). Insgesamt handelt es sich um etwa 4 % der Aktivität aller KKW-Abfälle. Internationale Bezeichnung: ILW (Intermediate Level Waste).

Der ganz überwiegende Teil der Aktivität besteht aus abgebrannten Brennelementen. In einigen Ländern werden Brennelemente wieder aufgearbeitet, d.h. man holt die Wertstoffe Uran und Plutonium heraus. Der Rest wird zu einer Art Glas verarbeitet (vitrified) und ist hochaktiver Abfall, obwohl, wie das Bild aus Frankreich zeigt, die ursprüngliche Aktivität zügig abklingt. Bezeichnung: HLW (High Level Waste), auch HAW.

Bis heute wird solcher Abfall nirgends endgelagert. Es gibt 2 Konzepte: Einlagerung in Granit oder ähnlichem. Das ist aber kein Einschluss, es kommt zu Kontakt mit Wasser. Finnland und Schweden gehen so vor, da sie nichts Besseres haben. Einen Einschluss würde Salz oder Ton bewirken, dies Konzept wird in der Schweiz, Belgien und Frankreich verfolgt. Die Tabelle zeigt den Stand der Planungen.

Land Abfallart Tatsächlicher oder geplanter Beginn des Baus Geplanter Beginn der Einlagerung
Belgien aufgearbeitet, Brennelemente 2035
Kanada Brennelemente 2035
China aufgearbeitet 2050
Finnland Brennelemente 2004 2023
Frankreich aufgearbeitet 2020
Deutschland aufgearbeitet, Brennelemente 2085
Japan aufgearbeitet 2035
Russland aufgearbeitet 2024
Schweden Brennelemente 2028
Schweiz aufgearbeitet, Brennelemente 2060

In Deutschland wird allein die Suche nach einem Standort offiziell bis 2031 dauern, Insider nehmen aber an, dass es vor 2060 nichts werden kann.

Sollte es kein grundsätzliches Umdenken geben, wird Deutschland niemals ein HLW-Endlager fertigstellen.

Schwach- und mittelaktive Abfälle werden überall auf der Welt oberflächennah deponiert.

Lager für schwachaktiven Abfall in Frankreich

In Deutschland steht schwach- und mittelaktiver Abfall vorwiegend in oberirdischen Lagern. Einiges wurde jedoch schon in die Grube Morsleben gebracht und darf dort auch bleiben. Anders ist es in der „Asse“. Alles soll gegen den Rat aller, auch „grüner“ Fachleute, aber nach dem einstimmigen Willen des Bundestages (mittlerweile ist es ein Gesetz) wieder herausgeholt werden, was Milliarden kosten wird.

Worum geht es? Das Bundesamt für Strahlenschutz schreibt selbst: Die gesamte Aktivität der über 100.000 Abfallfässer, eingelagert in mehr als einem halben Kilometer Tiefe, beträgt 0,5 % der Aktivität eines einzigen Castor-Behälters. Von diesen stehen (November 2011) in Gorleben 113 Stück über der Erdoberfläche.

Ein Denken in Größenordnungen darf man von unseren MdB’s nicht erwarten.

  1. Wie definiert man die Anforderungen an ein Endlager?

Auch unter ungünstigsten Annahmen darf nicht irgendwann, irgendwo, irgendwer einer höheren Strahlendosis als 0,1 Millisievert pro Jahr (mSv/a) aus dem Endlager ausgesetzt sein. Das ist 1/20 der natürlichen Strahlenexposition im Flachland von 2 mSv/a. Anderswo leben große Bevölkerungsgruppen bei 10 mSv/a und mehr, ohne dass ein Einfluss auf deren Gesundheitszustand erkennbar wäre.

In der Endlagerkommission sind auch einige wenige Fachleute, und ich hatte Gelegenheit, mit einem davon zu sprechen. Ich fragte ihn, ob es die Endlagersuche nicht erleichtern würde, wenn man höhere Grenzwerte als die 0,1 mSv/a zuließe. Nein, sagte er. Für jeden einigermaßen geeigneten Standort würden die Sicherheitsanalysen zu dem Ergebnis kommen, dass diese 0,1 mSv/a eingehalten werden können.

  1. Sollte Atommüll rückholbar gelagert werden? 

Hierbei wird an die Sicherheit gedacht; vielleicht wird es in Zukunft Möglichkeiten geben, den Abfall unschädlicher zu machen? Er schadet schon heute niemandem.

Oder sollte man die Möglichkeiten offenhalten, einmal Wertstoffe aus dem Abfall herauszuholen? Aufarbeitung lohnt sich heute nicht, warum soll das einmal anders werden?

Rückholbarkeit macht die Sache nur unnötig schwierig.

  1. Wie verändert sich Atommüll über die Jahrtausende? 

Wer Leute erschrecken will, kann durchaus zutreffend sagen: Die Zahl radioaktiver Atome nimmt auch in Jahrtausenden nur langsam ab. Ein Behälter mit hochaktivem Abfall, Kokille genannt, aus einer Wiederaufarbeitungsanlage enthält nach 30 Jahren typischerweise 4,11 ∙ 1025 radioaktive Atome, und 1.000 Jahre später sind es noch 3,44 ∙ 1025 Atome, also 84 %.

Aber: Die Aktivität, d.h. Strahlenteilchen pro Sekunde (Bq), wird dann von 4,1 ∙ 1015 Bq auf 2,0 ∙ 1013 zurückgegangen sein, auf etwa 0,5 %. Ursprünglich enthält eine solche Kokille 44 Arten von Radionukliden, nach 1.000 Jahren sind die 10 aktivsten aufgrund ihrer Halbwertszeiten unter 100 Jahren ausgeschieden. Viel Masse hatten sie nicht, denn hochaktiv bedeutet hohe spezifische Aktivität (Bq/kg).

Es bleiben schwachaktive Radionuklide. Ob diese von Bedeutung sind, hängt von ihrer Löslichkeit und ihrer Adsorption auf einem möglichen Weg nach oben ab.

Da spielt das gefürchtete Plutonium gar keine Rolle. Ausbreitungsrechnungen zeigen, dass andere Elemente, wie das recht unbekannte Selen 79, eine viel größere Chance haben, durchzukommen.

Nun sagen die Geologen: Wir blicken viele Millionen Jahre in die Vergangenheit, also können wir auch sagen, was in der nächsten Million von Jahren passiert. Aber wenn sich jemand ins Endlager hinab begibt, um etwa aus Unkenntnis ein Bergwerk anzulegen, und über die heute üblichen Explorationsmethoden nicht verfügt?

Bereits nach 100.000 Jahren muss man 4 kg vom Kokilleninhalt essen, um die tödliche Dosis zu erhalten (W. Rüegg, „Radioaktive Abfälle, lösbares oder unlösbares Problem?“ 2014). Das kann nicht mehr als Giftstoff bezeichnet werden.

  1. Was passiert bei Austreten von radioaktiven Substanzen in die Umwelt?

In den ersten Jahrhunderten nach der Einlagerung wäre das unangenehm. Man hat da Erfahrungen: In Tschernobyl und in geringerem Maße in Fukushima befinden sich künstliche radioaktive Stoffe an der Erdoberfläche. Caesium 137 wäre das bei weitem gefährlichste Radionuklid. Von Plutonium ist nichts zu befürchten. Nur als eingeatmeter Staub ist es ungewöhnlich gefährlich. In Tschernobyl kommen durch Plutonium kontaminierte Flächen vor, aber es gilt, was das Chemielexikon von Römpp schreibt:

Da Pu-Verbindungen unter natürlichen Bedingungen stets in das unlösliche 4-wertige Oxid übergehen, das im Boden komplex fixiert wird, ist die Gefahr eines Transportes in die Nahrungskette oder in das Trinkwasser gering.

Finnland und Schweden werden bald ein Endlager haben, in Frankreich geht es auch voran. In USA hat die Obama-Regierung erst einmal alles gestoppt. Über die Einstellung von Trump ist mir nichts bekannt.

In Deutschland wird es mit der Endlagerung nichts werden, solange die zu Anfang erwähnten Leute zu entscheiden haben.

 




Wie viele Menschenleben kostet erneuerbare Energie?

Vor Kurzem hat der Spiegel, sehr zum Erstaunen der Fachleute, eine sehr korrekte Abhandlung zur Gefahr durch Kernenergie veröffentlicht.1 Lange vor der Nutzung der Kernenergie gab es schon Tote durch Radioaktivität. Marie Curie, die Pionierin der Atomforschung, starb mit 66 Jahren an Leukämie, die durch die hohe Strahlenbelastung ausgelöst worden war, deren Gefahr die Entdeckerin der Radioaktivität noch nicht kennen konnte. Sie hatte zuvor sowohl den Nobelpreis für Physik (1903) als auch für Chemie (1911) erhalten. Heute kennt man die Wirkung radioaktiver Strahlen und sorgt sehr effektiv dafür, dass niemand im Umgang mit den strahlenden Substanzen gesundheitsschädlichen Dosen ausgesetzt wird.

 Die furchtbare, zerstörerische Wirkung der Atomenergie wurde 1945 beim Abwurf amerikanischer Atombomben auf Hiroshima und Nagasaki deutlich, durch die mehr als 200.000 Menschen getötet wurden. Der Großteil fiel dabei der Explosion mit ihrer enormen Druck- und Hitzewelle zum Opfer. Die Radioaktivität spielte eine nachgeordnete Rolle.2 Der Spiegel nennt gut 700 Tote durch Strahlenfolgen. Bei der friedlichen Nutzung der Kernkraft wird das Szenario des größten Schadens als GAU (größter anzunehmender Unfall) bezeichnet. Einen GAU hat es bislang gegeben, im Jahr 1986 in Tschernobyl. Der Spiegel nennt ca. 60 Todesopfer bis heute – das ist korrekt aus der Sicht des Strahlenschutzfachmanns. In den Medien waren auch schon oft viel höhere Zahlen zu lesen. Das liegt vor allem daran, dass zusätzlich zu den tatsächlichen noch statistische Todesfälle einbezogen werden.3 Solche „berechneten Toten“ infolge von Strahlenbelastung werden nur in Verbindung mit der friedlichen Nutzung der Kernkraft angeführt. Wenn sich der Mensch auf andere Weise – etwa durch eine Flugreise – erhöhter Strahlung aussetzt, werden normalerweise keine solchen Hochrechnungen angestellt. Würde man es tun, könnten daraus die Forderung nach dem „Ausstieg aus dem Flugverkehr“ abgeleitet werden. Rund 40 Millionen Deutsche reisen mit dem Flugzeug in den Urlaub, geschäftliche Vielflieger kommen hinzu. Die einfache Zahlenrechnung ergäbe dafür jedes Jahr ca. 100 „berechnete Tote“.4

Es hat bei der Nutzung und der Erforschung der Atomkraft wie in jedem anderen Technikbereich Unfälle gegeben, durch technisches oder menschliches Versagen. Die Zahl der Opfer war jedoch bisher gering. In Kernkraftwerken westlicher Bauart hat es durch Strahlung tatsächlich noch keinen einzigen Toten gegeben. Nehmen wir diese tatsächliche Bilanz als Maßstab, so ist bei den erneuerbaren Energien im Vergleich zur Kernkraft noch erheblicher Nachholbedarf in Sachen Sicherheit zu erkennen. Es gibt eine Vielzahl von Untersuchungen, in denen die Gefahren der Stromerzeugung mittels Kernkraft mit denjenigen durch fossile Brennstoffe einschließlich der Wasserkraft verglichen werden.5 Dem sind einige Gesichtspunkte hinzuzufügen.

Wasserkraft

Seit den 50er-Jahren, als die Entwicklung der Kernkraft begann, gab es in Europa zwei große Unglücke mit Staudämmen, die viele Tote forderten: Am 2.12.1959 brach der Malpasset-Staudamm bei Frejus (Frankreich), 421 Menschen starben. Am 9.10.1963 brachte in Longarone (Italien) ein Erdrutsch den Stausee zum Überlaufen, die Flutwelle forderte etwa 2500 Tote. Am 11.8.1979 brach der Machhu-Staudamm in Indien, die Stadt Morvi wurde überflutet. Die Zahl der Todesopfer wird oft mit mehr als 1000 angegeben, eine zuverlässig erscheinende Quelle spricht sogar von 15.000 Opfern.6 Das Unglück am Machhu-Staudamm geschah fast zeitgleich zum Atomunfall in Harrisburg (28.3.1979). Dort gab es keine Opfer, noch nicht einmal Verletzte. Dennoch wird das Unglück von Harrisburg oft genannt, der Machhu-Staudamm blieb weitgehend unbekannt.

Die Münchner Rück schrieb im Jahre 1997: Seit 1950 ereigneten sich weltweit rund 100 größere Dammbrüche; die meisten dieser Dämme sind vor 1930 erbaut worden (und daher vermutlich Erdwälle). 1975 sollen bei einem Staudammbruch am Huai-Fluss in China 26.000 bzw. mehr als 230.000 Menschen ums Leben gekommen sein.7 Es gibt auch in Deutschland ein Ereignis, dass die Gefahren eines berstenden Staudammes deutlich werden ließ: die Bombardierung der Staumauer des Edersees durch britische Bomber im Mai 1943. Damals fanden über 1000 Menschen den Tod durch die Flutwelle. In Hannoversch Münden, ca. 80 km unterhalb der Staumauer, kann man sich heute die Hochwassermarke von der Flutwelle ca. drei Meter über dem Gehsteig anschauen (HW 17.5.1953). Es gibt also durchaus eine drohende „terroristische Gefahr“, die als nicht unerheblich einzuschätzen ist.

Risikostudien

Vielen Menschen sind dennoch Kernkraftwerke nicht geheuer. Ermittelt man nach dem gegenwärtigen Stand des Wissens – und dieses ist für die Kernkraft sehr umfassend – das tatsächliche Risiko, so stellt sich dieses als sehr gering heraus. Die für deutsche Kernkraftwerke durchgeführten Risikostudien haben für die Häufigkeit einer Kernschmelze Werte um 10 hoch minus 6 pro Jahr ergeben, d.h., in einer Million Jahren ist mit einem einzigen Schadensfall zu rechnen.8 Dabei ist zu beachten, dass bei einer Kernschmelze zwar ein technisches Gerät zerstört würde, aber wie in Harrisburg kein Mensch zu Schaden kommen müsste. Im Vergleich dazu fehlen bei Staudämmen in der Regel technische Maßnahmen zur Verhinderung von Schäden an Menschen. Betrachtet man die Situation der Bewohner des Zillertals in Österreich, die unterhalb von drei Staumauern leben, so kann man nur konstatieren, dass sie im Notfall ziemlich chancenlos wären. Der Bruch nur einer Mauer – durch ein Erdbeben oder einen Anschlag – würde das ganze Tal überschwemmen, es gäbe für Zehntausende Menschen kein Entrinnen aus der Flutwelle. Falsch wäre es dennoch, angesichts solcher Katastrophenszenarien den Ausstieg aus der Wasserkraft zu fordern. Wohl aber sollte man sich der Gefahren bewusst sein und eventuell Vorkehrungen zur Schadensbegrenzung treffen.

Biomasse

Vollends harmlos erscheint auf den ersten Blick die Nutzung von Biomasse. Tatsächlich ist jedoch der gefährlichste Beruf hierzulande derjenige des Forstarbeiters. Jeder zweite Forstarbeiter erleidet pro Jahr einen Arbeitsunfall. In den Jahren 1991 bis 1994 gab es jedes Jahr in Deutschland rund 50 Unfalltote bei 36.000 gewerblichen Mitarbeitern.9 Diese Zahlen werden heute nicht wesentlich anders sein, denn die Gefahren beim Umgang mit Kettensägen und durch fallende Bäume sind geblieben. Auch sind nur Unfälle im Staatsforst erfasst, diejenigen aus dem privaten Bereich wären noch zu addieren. Bezeichnend ist, dass die Verkehrsunfälle bei der Fahrt zum Arbeitsplatz, die bei Berufen mit Bürotätigkeiten die tödlichen Unfälle dominieren, im Forstbereich zu vernachlässigen sind. Es überwiegen die Gefahren beim Holzeinschlag. Will man diese Zahlen in Beziehung setzen zu denjenigen des Tschernobyl-Unfalls, so wäre eine Hochrechnung auf alle Länder der Welt und auf ca. 50 Jahre durchzuführen. Die Opferzahl ginge schnell in die Zehntausende. Die Betroffenen sind weitgehend anonym, ihre tragischen Einzelschicksale werden in der Regel im Lokalteil der Regionalpresse vermeldet. Es gibt keine medienwirksamen Katastrophen, und es gibt keine gesellschaftlichen Debatten um die Sicherheit der Forstwirtschaft. Die Toten aber sind real, und ihre Zahl ist groß.

Auch Biogasanlagen können zur Todesfalle werden. Bei dieser noch vergleichsweise neuen Technologie wird die Biomasse in großen Reaktoren zersetzt, wobei überwiegend Methan (Erdgas) entsteht. Das Gas ist entzündlich, es kann zu Explosionen kommen, und es können Menschen durch das Gas vergiftet werden. Das ist in den letzten Jahren mehrfach geschehen, bedauerlicherweise hat es etliche Tote gegeben. Gewiss muss man einer neuen Technik zugute halten, dass sie in der Anfangszeit noch fehlerbehaftet ist (das ist der Beginn der Technikern wohl bekannten Badewannenkurve). Aus Fehlern wird gelernt, Verbesserungen und nicht Abschalten und Ausstieg sollten auch im Falle des Biogases die Konsequenz sein.

INES-Skala

Gibt es überhaupt eine Möglichkeit, sich von der Gefahr der Stromerzeugung durch Kernkraft ein zuverlässiges Bild zu machen? Es gibt zumindest ernsthafte Versuche, mögliche Gefahren genau zu beschreiben und einzustufen. Hierzu dient die INES-Skala (International Nuclear Event Scale): INES 1 ist eine Störung, INES 2 ist ein Störfall, INES 3 ein ernster Störfall, INES 4 ein Unfall, INES 5 ein ernster Unfall, INES 6 ein schwerer Unfall, INES 7 ein katastrophaler Unfall.10 Bei den in deutschen Kernkraftwerken gemeldeten Ereignissen handelt es sich zumeist um Kleinigkeiten, die mit der internationalen INES-Skala überhaupt nicht erfasst werden. Diese werden mit INES 0 bezeichnet, also unterhalb der internationalen Skala, da sie ohne Bedeutung für die Sicherheit sind. In der Statistik der deutschen Kernkraftwerke für die letzten 15 Jahre gab es 2158 gemeldete Ereignisse. Davon gehörten 96,6 Prozent zu INES 0, des Weiteren 3,3 Prozent zu INES 1, und nur 3 Ereignisse waren Störfälle nach INES 2. Hier Beispiele der Ereignisse:

· Im Kernkraftwerk Würgassen, seit 1994 stillgelegt und im Abbau befindlich, gab es am 6.5.06 einen Kurzschluss im Schleppkabel eines Krans. Einstufung: INES 0.

· Am 29.10.02 schwamm nach einem Herbststurm so viel Laub auf dem Neckar, dass beim Kernkraftwerk Obrigheim der Rechen am Kühlwassereinlauf gesäubert werden musste, dazu wurde das Kraftwerk ca. 45 Minuten abgeschaltet. Meldung an die Behörde erfolgte. Einstufung: INES 0. Die dpa-Pressemeldung lautete dennoch: „Fünfte Panne in fünf Monaten“.

· In Krümmel wurden im Nebengebäude mit den Notstromdieseln unter 630 Dübeln vier Exemplare entdeckt, die zwar die Anforderungen erfüllten, aber nicht vom vorgesehenen Typ waren. Einstufung: INES 0.

· Häufige Ereignisse nach INES 0 gibt es z.B. an den Notstromdieseln, die bei den regelmäßigen Prüfungen Abweichungen zeigen, sodass einer von bis zu acht Dieseln nicht uneingeschränkt zur Verfügung steht.

In Deutschland werden inzwischen alle Ereignisse in den Kernkraftwerken veröffentlicht, z.B. in der Fachzeitschrift atw. Man denke nur daran, dass jedes Jahr viele Tausend neue PKW von den Herstellerfirmen wegen technischer Mängel zurückgerufen werden, zumeist, weil sonst Personenschäden mit entsprechenden finanziellen Forderungen zu erwarten wären.

Risikoumgang

Es gibt nichts auf der Welt ohne Risiko. Wir lieben das Leben, obwohl es zu 100 Prozent tödlich endet. Wir lieben die Technik, denn erst die Technik ermöglichte es, die vielen Menschen überhaupt zu ernähren und vielen von uns ein angenehmes und langes Leben zu ermöglichen. Wo es noch keine Technik gibt, wo die Menschen heute noch so leben wie in unseren Breiten im Mittelalter, herrschen Analphabetentum, Mangel, Hunger und Krankheit. Die Kernkraft ist eine sehr sichere Technik, die Beschäftigten in den Anlagen dort sind kaum von Unfällen bedroht. Bei den alternativen, erneuerbaren Energien ist dies noch nicht in gleichem Maße gegeben. Hier gibt es Arbeitsplätze mit den meisten und folgeträchtigsten Unfällen, und es gibt die Möglichkeit für Unfälle mit erheblichen Opferzahlen. Sowohl in der Risikodebatte als auch in der Praxis besteht also Nachholbedarf.

Anmerkungen

1 Matthias Schulz: „Legenden vom bösen Atom“ in: Der Spiegel, 47/07 S. 160–164, wissen.spiegel.de.

2 „Strahlung, von Röntgen bis Tschernobyl“, Broschüre des GSF-Forschungszentrums, 2006.

3 Siehe hierzu Lutz Niemann: „Wie gefährlich sind radioaktive Strahlen?“ in: Novo81, S. 22–24.

4 „Tschernobyl: Gefahr vorbei?“, Ministerium für Finanzen und Energie des Landes Schleswig-Holstein, Rechenbeispiele auf S. 12f.

5 Siehe hierzu atw 51/06, Nr. 4, S. 242ff. und atw 52/07, Nr. 10, S. 620ff.; weitere Informationen hierzu unter: energie-fakten.de.

6 Steven Schultz / Jay A. Leitch: Floods and Flooding. Encyclopedia of Water Science, Second Edition, 2008, S. 380–385, informaworld.com.

7 „Überschwemmung und Versicherung“, Münchner Rück 1997, S. 29.

8 „Deutsche Risikostudie Kernkraftwerke Phase B, GRS, Verlag TÜV Rheinland, 1989.

9 „Agrarbericht der Bundesregierung“ von 1996.

10 Siehe hierzu bfs.de.

Dr. Lutz Niemann für EIKE

Der vorliegende Text ist im Magazin Novo (Nr.97, www.novo-argumente.com ) erschienen, und wurde am 19.12.2008 in DIE WELT abgedruckt (http://www.welt.de/welt_print/article2901108/Wenn-die-Natur-zurueckschlaegt.html)