Wasser – ein wahrhaft himmlisches wie rätselhaftes Wetterelement

Das "Feuer" passt nicht in das Schema, ist aber als Energielieferant unverzichtbar. Das "Licht" nimmt eine Sonderstellung an, denn es ist keine Erscheinungsform von Materie, sondern eine Folge von Materie, wie man bei der Herstellung von Eisen erkannte und darum unlösbar mit Materie verbunden. Die gesamte lebendige Materie in Gestalt von Pflanzen, Tieren und Menschen ist zudem ohne das Licht nicht denkbar. Diese schlichte Wahrheit steckt in dem Wort "Photosynthese", bei der grüne Pflanzen aus den zwei anorganischen Stoffen Kohlenstoffdioxid und Wasser mit Hilfe des Lichts organische Materie, also "Nahrung" für Tier und Mensch, produzieren. Zudem wird dabei de zur Nahrungsverbrennung notwendige Sauerstoff durch Spaltung des Wassermoleküls freigesetzt.

Die Urstoffe wiederum seien aus kleinsten unteilbaren Materieteilchen zusammengesetzt, den Atomen. Diese Auffassung vertrat Demokrit (470-380 v. Chr.). Wenn ein Kind zu einem stattlichen Mensch heranwächst und als Greis stirbt und verwest, dann kehren, so Demokrit, die Atome, "die sich in uns für kurze Zeit zu Lust und Leid gefügt haben", in den ewigen Kreislauf der Natur zurück. Man erkannte auch, dass die Atome von elementaren Kräften, der Anziehung und Abstoßung, beherrscht werden. Sie sagten: "Das Lieben und Hassen der Atome verursacht die Unruhe der Welt." Wenn sich am Himmel eine Wolke bildet, sammeln sich die einzeln und unsichtbar herumfliegenden "Wasseratome" zu sichtbarem Nebel, winzigen Wassertropfen. Diese können bald wieder verdunsten oder wachsen und als Regen zur Erde fallen. Verdunstet der Regen, dann steigen die "Atome" wieder in die Atmosphäre auf und werden über die Erde, wenn auch extrem ungleichmäßig, verteilt. Heute wissen wir, dass sich das "Wasseratom" aus drei Atomen (H2O) zusammensetzt, also ein aus Wasserstoff und Sauerstoff bestehendes "Wasserdampfmolekül" ist, mit ungewöhnlichen Eigenschaften.

Der Regen fällt vom Himmel, doch wie kommt er in den Himmel?

Kluge Leute haben berechnet, dass die

Lufthülle der Erde 13 x 10¹² m3 Wasser enthält. Das sind 13 Billionen Tonnen. Wer jedoch hat die Kraft oder die Energie, diese Riesenmenge an Wasser in die Luft zu heben? Wie viele Tanklaster mit 10 Tonnen Fassungsvermögen braucht man dazu? Die Erdoberfläche insgesamt hat eine Fläche von 510 x 10⁶ km². Würde alles Wasser auf einen Schlag ausregnen und gleichmäßig über die Erde verteilt zu Boden fallen, dann würden auf jeden Quadratmeter 25 Liter (25 mm) Regen fallen. Wäre dies die Jahresausbeute, die gesamte Erde wäre eine einzige Wüste. Walfischbai, eine Hafenstadt am Rande der Wüste Namib, einer typischen Küstenwüste in Namibia, misst im Mittel einen Jahresniederschlag von 22 mm. In Aden im Jemen, der trockensten Stadt des Nahen Ostens, sind es 46 mm.

Andere kluge Leute haben ausgerechnet, dass der mittlere globale Niederschlag etwa 1000 mm oder 1000 Liter pro m2 beträgt. Wenn dies wahr wäre, die Erde wäre keine Wüste sondern grün, vorausgesetzt der Regen wäre gleich verteilt und überall würde die "Globaltemperatur" von 15° Celsius herrschen. Dies zum Sinn oder Unsinn von Globalwerten. Sie sind "schön", aber nirgends zu gebrauchen. Wenn 25 mm an Wasser in der Atmosphäre sind, aber im Jahresverlauf 1000 mm ausregnen, dann muss sich im Jahresverlauf die Wassermenge der Luft 40 Mal oder knapp alle 10 Tage komplett erneuern.

Machen wir mal eine Überschlagrechnung: Pro Minute fällt auf der ganzen Erde 1 Milliarde Tonnen Regen. Doch diese müssen zuerst einmal verdunsten und in den Himmel gehoben werden. Dazu wird Energie benötigt, die nicht der Mensch sondern einzig und allein die Sonne zur Verfügung stellt. Um 1 Liter Wasser zu verdunsten oder zu verdampfen,

benötigt man etwa 0,63 Kilowattstunden. Bei 1 Tonne sind dies 630 und bei 1 Milliarde Tonnen 630 x 10^9 kWh. Diese Leistung an Verdunstungsenergie muss permanent vorgehalten werden, damit der Wasserkreislauf zwischen Niederschlag und Verdunstung in Gang gehalten werden kann. Bei einem Preis von 20 Cent pro kWh kosten 630 kWh 126 EURO. Die Menschheit müsste also pro Minute rund 125 Milliarden EURO für Verdunstungskosten aufwenden, damit 1 Milliarde Tonnen Regen vom Himmel fallen. Und das Jahr hat 8760 Stunden und diese wiederum 60 Minuten. Nach "Adam Riese" (1492-1559) müsste die Sonne der Menschheit pro Jahr für die Belieferung mit Regen eine saftige Rechnung über 65.700 Billionen EURO schicken, Jahr für Jahr. Doch wegen der extrem ungleichmäßigen Verteilung des Regens -Arica in der Atacama-Wüste Chiles erhält 0,8 mm und der Berg Wai'ala'ale auf der Insel Kauai in

Hawaii im Mittel 11 684 mm- gäbe es enormes Konfliktpotential, die Kosten einigermaßen "gerecht" unter den Völkern aufzuteilen.

Diese Energie liefert einzig und allein die Sonne mittels Licht und Wärme. An der Obergrenze der Atmosphäre beträgt im Mittel die "Solarkonstante" von 1368 W/m2. Kalkuliert man mit einem Verlust von 30 %, dann kommen im Mittel an der Erdoberfläche 960 W/m2 an und dienen deren Erwärmung. Von diesen müssen noch 30 Prozent für Verdunstung abgezogen werden. Bleiben 640 W/m2. Diese dienen der Erwärmung des Bodens und werden als Wärme per Leitung und Konvektion an die Atmosphäre weitergegeben. In Deutschland beträgt die mittlere Globalstrahlung etwa 1000 kWh/m2 pro Jahr, ohne von der Sonne eine Rechnung zu erhalten.

Zur Wärme als gestaltende Kraft der Natur

Speziell auf das Wasser bezogen spielt die Wärme, also die Temperatur, eine wichtige Rolle. Wir kennen seine drei Aggregatzustände: fest, flüssig und

gasförmig. Alle drei Zustände können gleichzeitig auftreten. Geht Eis in Wasser über und dieses in Wasserdampf, der für uns unsichtbar ist, dann ändert sich die Anordnung der Atome. Man spricht von

Phasenübergängen, deren Ursache wiederum in der Energie liegt, die einem Stoff von außen zugeführt oder entzogen wird. Es ändern sich die Gitterstrukturen. Bei Eis sind die Atome zu Gittern montiert, ist jedes Atom über die Elektronen seiner äußeren Schale mit seinen Nachbaratomen fest verklammert. Wird dem Eis Wärme zugeführt, geraten die Atome immer mehr in Schwingung, bis irgendwann der Punkt erreicht ist,

an dem sie so stark ausschwingen, dass die atomaren Bindungskräfte nicht mehr stark genug sind, die Atome an ihrem Ort im Gitter zu halten. Ubersteigt die Bewegungsenergie die

Bindungsenergie, dann geht der Körper in den flüssigen Zustand über, er schmilzt. Führt man dem Wassert weiterhin Energie zu, dann bewegen sich die Atome mit ständig wachsender Geschwindigkeit.

Immer mehr Moleküle durchstoßen die Oberfläche des Wassers und entweichen gasförmig als Wasserdampf in die Luft.

Diesen Vorgang kann man in der Natur nach jedem Regen beim Abtrocknen der

Straßen und dem Verschwinden der Pfützen beobachten. Auch das Trocknen der Wäsche auf der Leine geschieht ohne Zutun des Menschen. Immer herrschen winzige Luftbewegungen und Temperaturänderunge n, mit denen sich

die Aufnahmefähigkeit der Luft für Wasserdampf ändert. Schnell trocknen Straße und Wäsche, wenn das Sättigungsdefizit groß und die Aufnahmefähigkeit der Luft für Wasserdampf hoch

ist. Bei 0°C kann die Luft maximal 4,8g H2O, bei 10°C schon 9,4g und bei 30°C ganze 30,3g pro m3 aufnehmen, bis zur Sättigung. Die Geschwindigkeit, mit der Boden abtrocknet, hängt **VOM**

Sättigungsdefizit der Luft wie dem Wind ab und nicht allein von der Temperatur. Extrem trockene und kalte Polarluft wirkt über dem warmen Golfstrom wie ein Schwamm und kann erhebliche Mengen an Wassersdampf

aufnehmen und zu ergiebigen Regenfällen führen.

Ist Wasser zu Wasserdampf und damit zu einem unsichtbaren Gas geworden, dann sind die H20-Moleküle vollkommen frei beweglich und rasen mit kaum

vorstellbarer Geschwindigkeit umher, wobei sie sich ständig anrempeln und abstoßen. Ist der Raum begrenzt, wird Luft in einem Behälter eingefangen, stoßen die Moleküle nicht nur gegenseitig

zusammen, sondern sie prallen auch auf die Gefäßwände und üben dadurch auf diese einen Druck aus. Erhöht man die Temperatur des eingeschlossenen Gases, dann erhöht sich die Geschwindigkeit der Moleküle, der Gasdruck wächst. Der Druck kann schließlich so groß und die Bewegungsenergie so heftig werden, dass der Behälter platzt. Unter freiem Himmel ist dies nicht möglich, da die von der Erde ausgeübte Schwerkraft proportional dem Quadrat der Entfernung abnimmt, der Raum größer wird. Mit zunehmender Höhe nehmen der Druck und die Temperatur ab. Ein Luftpaket, das thermisch

aufsteigt, kühlt sich um 1 Grad pro 100 m Höhe ab. Man nennt dies den trockenadiabatische n Temperaturgradiente n. Die Temperaturabnahme mit der Höhe hat schon Alexander vom Humboldt

(1769-1859) bei seiner Amerika-Reise 1799-1804 untersucht und die Höhenstufen der Anden beschrieben von der Tierra Caliente bis zur Tierra Nevada oberhalb 5000 Meter. Wird beim Aufsteigen der Luft

der Taupunkt unterschritten, setzen Sättigung und Kondensation ein, dann wird die bei der Verdunstung benötigte Wärme als Kondensationswärme wieder freigesetzt und die Abkühlung der aufsteigenden Luft auf 0,5 Grad

reduziert. Fließt Luft über ein Gebirge, so erklärt sich hieraus auf der auf der Luvseite der Staueffekt und auf der Leeseite der Föhneffekt.

Struktur des Wassermol eküls bei

den Phasenübe rgängen

Bevor der Mensch

Temperatu r und Wärme messen konnte, hatte er

beobachte t, dass sich feste Körper bei

Erhitzung ausdehnen und bei Abkühlung wieder zusammenz

iehen. Je höher die Temperatu r wird, umso heftiger

bewegen sich die Moleküle und desto mehr Raum beanspruc

hen sie. Beim Abkühlen nehmen die Eigenschw

ingungen der Moleküle ab, das Volumen verringer

t sich. Gehen Körper **VOM** flüssigen in den

festen Zustand über, dann nimmt das Volumen

lm Schnitt um 10 Prozent ab. Dies gilt

allerding s nicht für das Wasser. Es ist ein

einzigart iger Stoff. Eis, also Wasser im festen

Zustand, hat eine geringere Dichte, ein größeres

Volumen und das ist der Grund, warum Eis schwimmt.

Wasser, das abgekühlt wird, verhält sich

anfangs wie alle anderen Stoffe auch, es wird

dichter. Doch nur bis 4° Celsius. Dann beginnt

es, sich wieder auszudehn en, bis es bei 0°C fest

wird. Dieses ungewöhnl iche Verhalten des H20-

Moleküls liegt an der einzigart lgen Atombindu

ng der beiden Wassersto ffatome und des Sauerstof

fatoms. Die chemische Formel H20 gilt streng

genommen nur für den Gaszustan d, wo sich die

einzelnen Moleküle frei im Raum bewegen, zwar

gelegentl ich zusammens toßen, aber sonst

nichts miteinand er zu tun haben. Kühlt der Wasserdam

pf ab, dann nimmt nicht nur die Heftigkei

t der Zusammens töße ab, die Moleküle beginnen

aneinande rzu haften und ein lockeres "Flüssigk

eitsgitte r" zu bilden. Der Grund liegt in der

spezielle n atomaren Bindung. Das 0-Atom

teilt sich mit iedem H-Atom ein Elektrone npaar und

bildet eine stabile Achtersch ale. Geometris

ch hat es die Form eine Pyramide, eines verzerrte

N Tetraeder S, In dessen Zentrum das 0-

Atom sitzt. Die beiden H-Atome befinden

sich an zwei der vier Ecken des Tetraeder s. An den

beiden anderen Ecken sammeln sich die Elektrone

n und bilden Wolken negativer Ladung. Dadurch

wird das Wassermol ekül polar, mit einem positiven

und negativen Ladungspo l. Diese Polarität führt

zwischen einander berührend en Wassermol ekülen zu

Wassersto ffbrücken bindungen So entstehen Riesenmol

eküle, wobei im flüssigen Zustand ein andauernd

er Wechsel der Bindungsp artner stattfind

et.

Dies ändert sich schlagart

ig bei Unterschr eiten der **4** ° Celsius. Das

Knüpfen und Lösen von Wassersto ffbrücken hat ein

Ende. Die Moleküle suchen sich elnen festen

Platz im sich verfestig enden Gitter, treten

aber auch plötzlich ln Distanz zueinande r. Die

Dichte des sich abkühlend en Wasser nimmt nicht

weiter ZU, sondern ab. Bei der Eisbildun

g werden regelrech te Hohlräume zwischen den

Tetraeder

Molekülen gebildet. Diese machen

etwa 10 Prozent des Gesamtvol umens aus,

weshalb Eis um etwa 10 Prozent leichter ist als

Wasser und somit schwimmt. Die Tatsache, dass Eis

leichter ist als Wasser, bewirkt, dass Seen und

Flüsse von der **Oberfläch** e her und nicht vom Untergrun

d her zufrieren Die oben schwimmen de

Eisdecke schützt das Leben ln tieferen Gewässers

chichten vor der Kälte des Winters, garantier t Fischen

das Uberleben im 4 Grad "warmen" Wasser. Die

Fähigkeit sehr viel Wärme zu speichern

ermöglich t die Entstehun g großer warmer Meeresstr

ömungen, etwa des Golfstrom s als Art Warmwasse rheizung

für die Nordwestk üsten Europas.

Die

einzigart 1ge molekular e Struktur des

Wassers macht Wasser zu einem ungemein lösungsfr

eudigen Stoff. Die polare Ladungsve rteilung

bewirkt, dass sich Salze im Wasser in ihre Ionen

auflösen, also Kochsalz in seine Ionen Na+ und Cl-.

Wasser löst aber nicht nur Salz- und Zuckerkri stalle

auf, sondern auch Gase WIe Sauerstof f (02),

Stickstof f (N2), Ammoniak (NH3) oder Kohlensto

fdioxid (CO2). Die Lösungsfr eudigkeit des

Wassers macht es erst möglich, dass Pflanzen

in der Lage sind, die für ihr Wachstum lebenswic

htigen Mineralie n über die Wurzeln aufzunehm

en. Fische können **1**M Wasser nur leben,

weil es sehr viel gelösten Sauerstof f enthält,

den sie mit ihren Kiemen einatmen. Das CO2, das die

Fische ausatmen, wird ebenfalls im Wasser gelöst

und wird von den Wasserpfl anzen genutzt, die

ihrerseit s H20 aufspalte n und Sauerstof f

abgeben, wie die grunen Landpflan zen auch.

maex

Dert

te r

eren

Stet

ALE

Ener

S

Orga

n 1 S C

Stam

als

trom

agne tisc

Von

Sonn

ange nehm

Was remarkable

ende Wirk

Sonn

enst

Unc

erba

rmun

GSLO

S

KONM

en

tzen

SCh

ag. Tst

es

Cem

ensa

J.G. T. C. T

am

nach

unte

dies

J. Was

den

Mens

chen

oen o ellne

Stan

te e

Körp erte

atur

Von

MUSS

sich dahe

Cher maße

VOCUBER

lonte

SCHU

tzen

unbe

dete

mens chli

Che

erob

erft äche

Stra

tote

Dhys

ikal

e r

Marm

Temp enat

CEST

men

Marm

estr

ahlu

Pote

tute

Temp enat

ange gebe

enlo

Sem

SChW

ache

CITUC

ter

en

ntem

Dera

auch

0000

nnah

temp

erat

Cem

Sonn

enga

SOMM

ers

ers.

Stet

Mech SELS

ZWIS chen

SOLA

tran

ter

estr

en

Auss

unte

AOZU

der

Verc

UST

Verification of the second sec

Star

berfläch

erwa

Vom

Sonn

enst

en

Marm

eauf

nahm

efah

des

Unte

ndes

NS

ganz

gewa ltig

Mass

Werd

en

des M

egen lang

Same

erwa

als

oder

Sanc

h, weil

Mass

die höch

Ste

SPEZ 115

Che

Marm

SONO

en

dem

Mass

feuc

hten

CU C

Verde Contraction of the contrac

UST

ung imme

Marm

entz

Ogen

der

Fach lite

ratu

etwa

Proz

ent

est r

ahlt

en

Sonn

enen

e r g 1

Verde Contraction of the contrac

und und

Aufr echt erha

erk

auf S

Cht

Werd

en.

e h t

r mul n

des

Oden

S

J/VEF

tore

aben

denn

och nich

Verification

oren

SONO

ern

ente

Marm

auf

Konc

ensa tion

Von

en

dese tzt.

tzte

Kond

ensa

SWa F

Me

entw

tteer

Gesc hich

tete

Atmo

Spha

Stoß

VOF

MO

5

Ambo

SS

ausb

en .

Wenn

die beid

en

aexp erte

CES

POts

C a m -

General

OISC

Rahm

Stor

Sche

AUff

S

Buch

ES

aWan

2) SChr

elbe

h, Uns

alen

ONIS ellne

ache

Von

LAT

Stra hlte

Marm

estr

ahlu

MUSS

ab 50

Sonn

enst

aus S

dann

Clas

SCh

Weg einf

ach

MUSS

t S

au SC

Stra

das

an

Ener

Mas

VOF

Von

Sonn

erha

SPIL

ab 50

rt, hat,

elha Z

alle

Sonn

mit ihre

Stra hlun

g sen

die

erat

uren

der

eren

den

nach

esze

nach

rabh

en

OCE F

oder

atte

atur

es

auch

SONO

ern

anha

SChe

e rul

Chhe

Alle

ange stel

ten theo

SChe

acht

und de

auch

CESW

egen

geze igt

We ro

en, rein

SChl

den

nzoe

rec h

nun de la companyation de la com

en

ein Drit

SOLa

rene

rgie

rsc n

unte

den

WU C

ES

MUING

SONO

ern

SINN

erwe

VON

erk

1MWe Stile

Ware

das

ohne

er

Mas

ohne

ohne

Rege

Mer

nzen

acht

ES

Sich

Jein fach

mach

Wenn

Cem

Vorw

nzfä lsch

ausg eset

Sene

un G

ZUMa

des

IMAS

ohne

ES

Vers

b rec

Oppe nhei

C e n

AUGU

St

Gan G